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Logic of Likelihood 
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The notion of "probability" is generalized to that of "likelihood," and a natural 
logical structure is shown to exist for any physical theory which predicts likeli- 
hoods. Two physically based axioms are given for this logical structure to form 
an orthomodular poset, with an order-determining set of states. The results 
strengthen the basis of the quantum logic approach to axiomatic quantum theory. 

1. INTRODUCTION 

It has long been noted that every theory which makes statistical pre- 
dictions has an associated probability and logical structure (Husimi, 1937; 
Maczynski, 1974; Hall, 1988). Moreover, it has been shown that the well- 
known Bell inequalities provide necessary conditions for such a theory to 
both (a) have a classical structure (i.e., a Boolean logic with Kolmogorovian 
probabilities); and (b) satisfy a weak statistical-locality condition (Hail, 
1988)~ 

The apparent violation of the Bell inequalities in nature (Aspect et al., 
1982) strongly suggests then that a local description of physical phenomena 
may be retained only by restriction to theories with nonclassical probability' 
and logical structures. This provides a new, semiempirical motivation for 
the study of such structures in physics. 

In fact, motivated initially by an analogy between the formalisms of 
classical and quantum mechanics (Birkhoff and von Neumann, 1936), such 
structures have long been studied within the quantum logic approach to 
axiomatic quantum theory (e.g., Hooker, 1979). The mathematical nucleus 
of this approach is formed by orthomodular posets, which neatly extract 
and generalize essential "quantum" features of the standard Hilbert space 
formalism (e.g, Beltrametti and Cassinelli, 1981; Varadarajan, 1985). 
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A primary aim of the present paper is to augment the foundations of 
the quantum logic approach, by providing two physically based conditions 
for the inherent logical structure of a statistical theory to form an orthomod- 
ular poset. However, the result is obtained within a more general setting, in 
which the concept of "probability" is generalized to that of "likelihood." 

In particular, whereas probabilities take values on the involutive poset 
([0, 1], <, ~), where < is the natural ordering of the reals and ~ p =  1 - p ,  
likelihoods (defined in Section 3) may take values on any involutive poset. 
It is shown in Section 4 that any theory which predicts likelihoods has a 
natural, "poser-valued" logical structure, called the predictive logic of the 
theory. Under two simple axioms, this predictive logic is shown to be an 
orthomodular poser (Section 5). 

There are several conceptual advantages gained in replacing probability 
by the more abstract notion of likelihood: 

(a) The fundamental nature of orthomodular posers is emphasized by 
the results, which are independent of particular features of prob- 
ability, such as additivity and well-ordering. 

(b) The results indicate that probability, with its various interpreta- 
tional difficulties, need not be accepted as an a priori nonanalyzable 
component in axiomatic approaches to quantum mechanics. 

(c) A particular form of likelihood, corresponding to the 3-valued or 
ternary lattice (Section 3), is of particular relevance to the quantum 
logic approach (Section 5). 

A general characterization of physical theories in the following section 
provides the basic framework for discussing likelihood in Section 3, and 
logical structures in Sections 4 and 5. Dynamical aspects are considered in 
Section 6, indicating the primacy of the Heisenberg picture over the Schr6- 
dinger picture within the framework of likelihood theories. Conclusions are 
presented in Section 7. 

2. CHARACTERIZATION OF PHYSICAL THEORIES 

A theory for a class of physical systems will in general have both a 
descriptive and a predictive component. In this section notation is developed 
to enable discussion of those theories which predict "likelihoods" (and in 
particular those theories which predict probabilities). 

It will be assumed here that the descriptive component of the theory is 
made up of a triple (S, X, P), where S denotes a set of states, describing 
individual members of the class, X denotes a set of experiments, describing 
physical operations which may be performed on any member of the class, 
and P denotes a set of experimental propositions, describing the possible 
outcomes of experiments in X (see further below). 
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For various reasons it may appear attractive to assume that S and X 
are a priori structurally related. For example, states might be identified with 
experiments that have single outcomes (i.e., "preparation procedures"), or 
indeed each experimental outcome might be identified with some state 
(regarding measuring devices as "filters"). Alternatively, Foulis et al. (1983) 
and Bennett and Foulis (1990) consider the case for which (S, X) forms a 
so-called "entity," where the elements of S correspond to subsets of experi- 
mental outcomes satisfying certain intersection conditions (Example 3.2 
below). It will not be necessary in this paper to assume any prior relation- 
ships between S and X. 

For each experiment EeX,  let R(E) denote the set of possible results 
for E. Then, for a _~R(E), let E~ denote the experimentalproposition, "The 
result of E is contained in subset a of R(E)." Thus, E~ is either verified or 
falsified by each performance of experiment E. The set of experimental 
propositions of the theory will be denoted by P, as indicated earlier. 

Since the totality of experimental propositions {E~} for a given E char- 
acterizes the possible results of experiment E, the role of the predictive 
component of the theory may be formulated as follows: to provide prior 
information concerning the verification/falsification of  various experimental 
propositions in P, when tested for systems described by various states in S. 

For example, a statistical theory may be characterized as containing a 
mapping p from P • S to the interval [0, 1], such that p(E~, s) is predicted 
as the probability that proposition E~ ~ P will be verified if  tested for state s ~ S. 
To qualify for such an interpretation, p must of course satisfy the conditions 

p(ER(E~, S) = 1 (la) 

p ( E ~ p , s ) = p ( g ~ , s ) + p ( E p , s )  for ac~f l=;3  (lb) 

for every E~X, s t  S [note that only finite additivity is specified in (lb), since 
any physical experiment can only distinguish among a finite number of 
possible results]. A deterministic theory is defined as a special case of a 
statistical theory, with p(E~, s) restricted to the range {0, 1}. The inherent 
logical structures of such theories, which include both classical and quantum 
mechanics, have been discussed in Hall (1988). It will be seen in Section 4 
that such structures exist for any theory which makes poset-valued 
predictions. 

3. CHARACTERIZATION OF LIKELIHOOD THEORIES 

3.1. Basic Postulates 

Generalizing from the case of statistical theories, a likelihood theory 
may be provisionally defined as a physical theory with descriptive component 
(S, X, P) and predictive component (L, 1), where L is a set of likelihoods, l 
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is a mapping from P • S to L, and l (E~, s) is predicted as the likelihood that 
experimental proposition E~ ~ P will be verified, if tested for state se S. 

To capture intuitive notions of  likelihood, certain conditions should be 
imposed on I and L. For example, it might be required that L be the interval 
[0, 1], and that equations (1) be satisfied with p replaced by 1. In this case 
"probability" and "likelihood" are equivalent. However, as discussed in the 
Introduction (see also Section 3.3), there are some advantages to be gained 
by imposing less restrictive requirements at this stage. Three fundamental 
requirements are postulated below. 

First, for an experiment E~X with result set R(E) (see previous section), 
let a c denote the relative complement R(E) \a  for each a ~ R(E). Thus, the 
experimental proposition E~c is verified by experiment E if proposition E~ 
is falsified, and vice versa. It follows that any prior information concerning 
the verification/falsification of  E~c stands in a one-one relation with informa- 
tion concerning the verification/falsification of  E~, motivating the following 
postulate: 

(L1) The likelihood of experimental proposition E~ being verified for 
a given state determines the likelihood of experimental proposition 
Ed  being verified for that state. 

Postulate (L l) is essentially equivalent to Axiom (1 �9 i) of  Cox (1961) in his 
axiomatization of  probability, and implies that there exists an involution ~ on 
L, such that for all E~X, sr 

l (E~,  s) = ~ l  (E~, s) (2a) 

Second, for an experiment E~X consider two experimental propositions 
Ea, EpeP with a_=fl. Thus Ea will be verified by experiment E whenever 
E~ is verified, and may possibly be verified even if E~ is falsified. In an 
intuitive sense, then, the verification of  Ea is less likely than the verification 
of  Ep, suggesting that certain likelihoods should be comparable, or ordered. 
This motivates: 

(L2) There exists a partial ordering < on L such that for all EeX, s ~S, 

1 (E~, s) < l (Ep, s) if a _~ fl (2b) 

Note here that a binary relation < on L is a partial ordering if for all x, y, z ~ L 
one has: x < x (reflexivity); if x < y  and y <z,  then x < z (transitivity); and 
if x_<y and y <x ,  then x = y  (antisymmetry). Postulate (L2) is essentially a 
generalization of  Axioms 1 and 2 of  Jeffreys (1961) in his axiomatization of  
probability, which further require the relation _< to be a total ordering (i.e., 
x < y or y < x  for all x, yeL).  
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Third and finally, for two experiments E, F~X consider the experi- 
mental propositions E~, F;z~P, where ~ denotes the empty set. These pro- 
positions are a priori always falsified by experiment, and hence intuitively 
should be equivalent with respect to their "zero" likelihood of verification. 
This motivates the normative postulate: 

(L3) The likelihoods of any two "absurd" propositions E~,  F e  being 
verified for a given state are equal, i.e., for all E, FeX, seS, 

I (E~ ,  s) = l (F~,  s) (2c) 

Postulate (L3) is related to Axiom 3 of Jeffreys (1961), which in part states 
that absurd propositions have equal probabilities. 

Postulates (L1)-(L3), or equivalently conditions (2a)-(2c), provide 
sufficient restrictions on the notion of likelihood for deriving the results of 
this paper. Any triple (L, <, ~), where (L, _<) forms a partially ordered set 
and .-~ is an involution on L, will be called a likelihoodposet. The provisional 
definition of likelihood theories given at the beginning of this section may 
now be made more precise: 

Definition. A likelihood theory is a physical theory with descriptive 
component (S,X, P), and predictive component ( ~ , l ) ,  where ~ =  
(L, _<, ~)  is a likelihood poset, and l is a mapping from P x S to L which 
satisfies conditions (2a)-(2c). 

3.2. Examples of Likelihood 

Some important examples of likelihood posets, and the nature of their 
corresponding likelihood theories, are briefly discussed below. 

Example 3.1. The binary lattice and deterministic theories. Likelihood 
theories which predict the same values for 1 (E~, s) and 1 (ER<F~), S) are trivial. 
Among nontrivial theories, the simplest likelihood poset is the bina~ T lattice 
A('2 = (L2, _<, .-~), where L2 has exactly two elements, interchanged under 
involution. Two suggestive notations for L2 are {F, T} and {0, 1 } ; the latter 
will be adopted here. For a binary likelihood theory, with predictive compo- 
nent (A~ l), it can be checked that the requirement I(E~, s)=0 merely 
removes the interchange symmetry between the labels 0 and 1, and so may 
be adopted as a convention. With this convention it follows that 
I(ER<e), s)= 1, from condition (2a), and hence that 0<1 from condition 
(2b). 

In general, the binary likelihood values 0 and 1 may be interpreted as 
"unlikely" and "likely," respectively. The stronger interpretation of 0 as 
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"impossible" [and hence 1 as "certain" via (2a)] is consistent only if the 
condition 

l(E~,s)=O implies l (E~ , s )<_ l (Ep , s )  (3) 

is satisfied. This condition ensures that a result r e a  w fl is no more likely 
than a result refl ,  whenever a result re a is ~'impossible." Condition (3) is 
of course satisfied by all deterministic theories (defined at the end of Section 
2), where the prediction l(E~, s)=0 corresponds to the impossibility of 
experimental proposition E~ being verified, if tested for state s. 

Example 3.2. The ternary lattice and "entities." The simplest nontrivial 
likelihood poset, after the binary lattice, is the ternary lattice s = 
(L3, _<, ~),  where L3 = {0, �89 1 ) has exactly three elements, satisfying ~0 = 

l J ___~_< 1, ~ - ~ ,  and 0 1. If  condition (3) is satisfied, then the likelihood values 
0,�89 1 can be consistently interpreted as corresponding to the notions 
"impossible," "indeterminate," and "certain," which are natural precursors 
to the concept of probability. 

The class of ternary likelihood theories, with predictive component 
(~3 ,  l), is related to the "entities" defined by Foulis et al. (1983; see also 
Bennett and Foulis, 1990). In the notation of the present paper, the descrip- 
tive component (S, X, P) of a physical theory forms an entity if the elements 
of S correspond to nonempty subsets of experimental outcomes, such that 
both the "covering condition" 

U s= U R(E) (4a) 
s e S  E ~ X  

and the "exchange condition" 

s n R(E) ~_ R(F) implies s n R(F) ~_ R(E) (4b) 

are satisfied. According to Bennett and Foulis (1990, p. 735), "the outcomes 
that belong to a state s are understood to be those that could be 
ob ta ined . . ,  when the entity is in state s," i.e., the outcomes which are not 
in s are "precisely those that are impossible in state s." Hence an entity 
corresponds naturally to a ternary likelihood theory, with the mapping/3 
from P x S to L3 defined by 

0, a n s = ~  

13(E~,s):= 1, aC chs=~ (5) 

�89 otherwise 

It can be checked that conditions (2a)-(2c) and (3) are satisfied by this 
definition [conditions (4) imply s n R(E)#  ~ always, and hence that/3 is 
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indeed well-defined]. Entities can therefore be characterized as correspond- 
ing to a special class of  ternary likelihood theories. The relation of the 
"operational logic" of an entity to the "predictive logic" of  a likelihood 
theory is commented on in Sections 4.1 and 7. 

Example 3.3. The unit lattice and statistical theories. The unit lattice is 
defined to be the likelihood poset s  1], <, ~),  where [0, 1] denotes 
the unit interval, < is the natural ordering of the reals, and ~ is the in- 
volution ~ x =  1 - x .  A statistical theory may be characterized as a like- 
lihood theory with predictive component (s such that p satisfies 
equations (1). 

Example 3.4. A symmetric construction for likelihood posets. A wide 
class of likelihood posets, including those of the preceding examples, may 
be obtained via a very simple construction. In particular, if cr is any symmet- 
ric binary relation on some set V, define W _  V to be cr-closed if W= (W'~) '~, 
where 

W'~:={wVlvcro9 for all w~W} (6) 

It can then be shown (e.g., Birkhoff, 1967, Section V.7) that the triple 
(Z(V), _,  O) is a likelihood poset, where Z(V) denotes the set of cr-closed 
subsets of V, __ is the set-inclusion relation, and 0 denotes the involution 
which maps W to W '~. Moreover, the poset (Z(V), ~ )  is a complete lattice 
[i.e., the least upper and greatest lower bounds with respect to c exist for 
every subset of  Y.(V)], and ~ is order-reversing (i.e., W~ ~ W2 implies 
w~_ w~). 

The properties of  completeness and order-reversal in fact fully charac- 
terize those likelihood posets which may be generated in this manner. For, 
if 50 = (L, <, "0 satisfies these two properties, then it can be shown that 
is isomorphic to (Z(L),  _~, 6) under the mapping x ~  {~x} '~, where ~r 
denotes the symmetric relation x < ~y. For the case of Examples 3.1-3.3, cr 
has the alternative form x +y_< 1. 

3.3. Discussion 

Likelihood, as characterized in Section 3.1, is a much weaker notion 
than probability. In particular, there are no metric, well-ordering, or additiv- 
ity requirements imposed. 

A few remarks are in order concerning the possibility of  testing the 
predictions of likelihood theories. For both binary and ternary likelihood 
theories (Examples 3.1 and 3.2), where 0, �89 and 1 are taken to correspond 
to "impossible," "indeterminate," and "certain," respectively, predictions 
are indeed testable. In particular, the predictions l (E~, s) = 0 and l (E~, s) = 1 
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may be refuted by experiment (via verification of experimental propositions 
Ea and E~o, respectively, for state s), while the prediction 1 (Ea, s) = �89 may be 
confirmed by experiment (via verification of experimental propositions Ea 
and E~ on separate occasions, for state s). 

The predictions of statistical theories are at least partially testable, via the 
naturally associated ternary likelihood theory (obtained by mapping probabil- 
ity x to likelihood �89 for 0 < x < 1). However, interpretational difficulties inher- 
ited from classical probability theory present problems with regard to 
complete testability. For example, thinking of probabilities as "limiting rela- 
tive frequencies" implies that no measured relative frequency can actually 
determine a probability (since an experimenter only has access to a finite 
number of experimental results). Even ifa statistical theory predicts the prob- 
ability of a given relative frequency, this probability is not measurable itself 
as a relative frequency by the same argument. Jeffreys (1961, Chapter VIII) 
provides an excellent discussion of such problems, and concludes that prob- 
abilities should be interpreted as "reasonable degrees of belief." More prag- 
matically, a statistical theory may be viewed as providing a "well-ordered list 
of betting odds" (Lande, 1965, p. 140), or, in the terminology of de Finetti 
(1974), a "coherent prevision," for the possible outcomes of experiments. But 
how is an experimenter to judge objectively between the "coherent previsions" 
of two rival theories? 

The characterization of likelihood theories here offers two possible alter- 
natives in this regard. First, one could from the outset deal only with ternary 
likelihood theories, which are testable. In the context of this paper, it will be 
seen that this alternative suggests a special "order-determining" assumption 
for the states of a physical theory (see Section 5.3). 

Second, one could decide to accept likelihood, rather than probability, as 
the appropriate primitive notion in the axiomatization of physical theories. 
This alternative will be adopted here, as it (i) provides a sufficient basis for 
defining and discussing "predictive logics" for physical theories; (ii) includes 
probability as a special case; and (iii) allows for the possibility of a future 
generalized characterization of "probability" which permits (objectively) test- 
able predictions. 

4. THE PREDICTIVE LOGIC OF A LIKELIHOOD THEORY 

4.1. Abstract Propositions 

The theoretical concepts of "position," "momentum," "mass," "spin," 
"charge," etc., which appear in current physical theories are abstracted from 
a range of empirical phenomena. In particular, propositions relating to such 
concepts (e.g., "the position is to the left of marker A") may be tested by 
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many different experiments, and thus correspond to equivalence classes of 
experimental propositions. 

The characterization of physical theories in this paper (Section 2) per- 
mits only one natural manner for the (nontrivial) construction of such 
classes: two experimental propositions of a physical theory are defined to 
be equivalent with respect to the theory when the predictions of the theory 
do not distinguish between them. The relation of equivalence will be denoted 
by =,  and for the case of likelihood theories (Section 3.1), is given by 

E~=-Fa if and only if l(E~,s)=l(F~,s) for all s~S (7) 

Relation (7) implies that the experimental propositions of a likelihood 
theory may be represented up to equivalence by mappings, from the set of 
states S to the set of likelihoods L, where E ~ P  is represented by the map- 
ping ~ ,  with 

#o(s) := l (e~, s) (8) 

These mappings will be called the abstract propositions of the theory, and 
the set of such propositions denoted by ~ [this improves on the notation of 
Hall (1988), where the distinction between P and N is made by context 
only]. The relation E~ = F~ holds if and only if g~ = ~-a. 

An abstract proposition d E ~  is testable via experiment EeX if 
d = r  for some a~_R(E), in which case d is verified by experiment 
E if the experimental proposition E~ is verified. In general, an abstract 
proposition d e ~  may be tested by a number of distinct experi- 
ments E, F, G , . . . ,  provided only that d = ~ = ~ = f#r = . . .  for suitable 
a, fl, 7/ . . . . .  The likelihood of d being verified, if tested for state seS, is 
given from (8) by d(s). 

The natural formation of equivalence classes for experimental proposi- 
tions, via definition (7), may be compared with the method of the "opera- 
tional approach" to quantum mechanics. In this approach, the construction 
of such classes relies on the "common practice of outcome identification" 
(Randall and Foulis, 1979, p. 172), i.e., "once we have assembled those 
physical operations of concern to us in a particular effort, we are almost 
inevitably moved, either by custom or by a particular intent, to identify 
certain outcomes of different operations" (Randall and Foulis, 1979, p. 171 ). 
Representing this initial identification process by allowing result sets for 
distinct experiments to overlap (e.g., Foulis et al., 1983, p. 814), we can 
formulate the "operational" construction here as follows [definitions are 
taken from Bennett and Foulis (1990), Section 3]. 

First, define E~,F~P to be local complements if a~fl=;2J and 
a u f l=R(G)  for some G~X. Second, define the perspectivity relation 
E~,~Fa to hold when E~ and Fp share a common local complement. Third, 
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define the implication relation E~ =*- F,  to hold when there is some sequence 
�9 . , E(")-F E~', ), . ,E~"),eP such that E~',)=E~ ~ , -  p, and either ai~_ai+, or 

E ~ E ~ , + ~  ) for each i= 1, 2 . . . .  , n - 1 .  Finally, define E~, F,  to be opera- 
tionally equivalent if E~ =~ Fp and F,  =~ Ea. 

It may be checked that operational equivalence is indeed an equivalence 
relation on the set of experimental propositions. However, if no experimental 
outcomes are initially identified, then operational equivalence reduces to the 
trivial relation of identity. Hence, any "physics" arising from the operational 
construction is in fact contained in the initial, unspecified identification pro- 
cess. Further, for a given identification process there is no guarantee that 
predictions of a physical theory will respect operational equivalence. 

The reliance on some a priori identification process does not affect the 
usefulness of the operational approach in "formulating a precision 'lan- 
guage' in which . . ,  theories can be expressed, compared, evaluated, and 
related to laboratory experiments" (Foulis and Randall, 1981, p. 9). The 
operational approach does, however, provide a physically ambiguous basis 
for an axiomatic approach to quantum theory, in that the all-important 
identification process is not specified. This contrasts with the framework of 
likelihood theories, in which the relation of "predictive" equivalence [rela- 
tion (7)] uniquely and naturally specifies equivalence classes of experimental 
propositions. 

4.2. Predictive Logics 

The abstract propositions of a likelihood theory possess a natural logical 
structure. First, likelihood postulate (L1) of Section 3.1 implies the existence 
of a natural involution, ~, on the set of abstract propositions, where ~ d  ~ 
is defined for each d e ~  by 

( ~ d ) ( s )  := ~ ( d ( s ) )  (9) 

Second, likelihood postulate (L2) implies the existence of a natural partial 
ordering, <, on ~ ,  defined by 

~r if and only if d ( s ) < M ( s )  for all s ~ S  (10) 

The predictive logic of a likelihood theory is defined to be the involutive 
poser (,~, _<, ~). Conditions (2a)-(2c) for likelihood theories may be 
rewritten as properties of the predictive logic: 

~ = ~Sa (11 a) 

,~a ___ ~p for a ~ f l  ( l lb)  

r  ( l lc)  
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where the existence of the special abstract proposition 0 in ( l lc)  follows 
from condition (2c). The abstract proposition ,,~0 will be denoted by 1. 

The conjunction, d ^ ~ ,  and the disjunction, d v ~ ,  of two abstract 
propositions d ,  9 ~ '  may be implicitly defined in the usual manner as 
greatest lower and least upper bounds: 

~ r  if and only if c~_<d, cg<~  (12a) 

d v ~_< c# if and only if d _< c#, ~_< c# (12b) 

Thus, d A # #  and d v 0# are only well-defined when the corresponding 
bounds exist (though see Section 4.3 below for the case where the likelihood 
poset forms a complete lattice). 

It follows from relations (12) that the connectives ^ and v are idem- 
potent, commutative, and associative. Moreover, interpreting the relation 
W<#~ as " d  is less likely than ~ , "  it follows that d A 9~ has the greatest 
likelihood of being verified in any state, of all those propositions less likely 
than both d and ~.  Similarly, d v ~  has the least likelihood of being 
verified in any state, of all propositions more likely than both d and ~.  

The propositions d A ~  and d v # ~  (when they exist) are directly 
related by de Morgan's law in the case where the predictive logic has an 
order-reversing involution. In particular, the relations 

#V~=~"("~CA"~) for all d ,  #~et~ (13a) 

d < _ ~  implies ~ < ~ d  for all d , ~ ) ~ , ~  (13b) 

are equivalent. [To demonstrate this equivalence, note first that (13a) follows 
from (13b) using relations (12). Conversely, if (13a) holds, then d _ < ~  
implies d v ~3 = ~ from (12b), and hence - - ~ =  ,,~d A ,,~' from (13a). Sub- 
stitution into (12a) with ~ =  ~ yields (13b).] Note that a sufficient condi- 
tion for (13b) [and hence (13a)] to hold follows from (9) and (I0): 

x<y  implies ..~y<~x for all x ,y~L  (14) 

This condition is satisfied by all the examples in Section 3.2. 
Conditions for the predictive logic of a likelihood theory to form either 

an orthomodular poset or a Boolean lattice are considered in Section 5. 
First, a generalization of the predictive logic is given for the case where the 
likelihood poset forms a complete lattice. 

4.3. Potential Abstract Propositions 

Conditions (2a)-(2c), or equivalently ( l l a ) - ( l l c ) ,  imply that every 
abstract proposition d e ~  must satisfy 

0_<.4_<1 (15) 
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where 1 denotes ~0. Generalizing from Hall (1988, Section 3), the set of 
potential abstract propositions ~ '~  is then defined as the set of all mappings 
from S to L which satisfy condition (15) [extending definition (I0) to such 
mappings]. Thus, . r  and for a given set of states S, all elements of 
~ N  are a priori candidates for abstract propositions. 

In the case where (L, <) forms a complete lattice (see Example 3.4), 
the "conjunction" and "disjunction" of an arbitrary set {A;} in N ~  are 
respectively defined by 

(/xl dl)(s):= sup{rg(s) I c g ~ ,  ~_< r~i di} (16a) 

(vi di)(s):= inf{Cg(s)I cge~, u,  d~<~g} (16b) 

where ni d~, w~ d ~ e ~  are given by 

(n~di)(s):=inf{d~(s)}, (we d~)(s) := sup{d~(s) } (16c) 

and inf and sup denote least upper and greatest lower bounds, respectively, 
in (L, <). 

The above definitions directly generalize those in Hall (1988, Section 3) 
and satisfy similar properties. In particular, definitions (16a) and (16b) are 
consistent extensions of (12a) and (12b) and satisfy associativity and com- 
mutativity. The extended definitions confer the technical advantage that 
d ^ ~ and d v N' always exist as potential abstract propositions, if not as 
lower and upper bounds. Further, they allow the definition of the closure, 
~,  o f ~ :  

~ : =  (,~'e N ~  I d ^ d = d  v d }  (17) 

It can be shown that ~ is a closure relation on NN (i.e., ~___~, ~ =  
~,  ~ ---N2 implies ~ -~.~2), and that ~ is the maximal extension of ~ in 
~ which preserves "joins" and "meets" [as defined in (16)]. 

5. AXIOMS FOR PREDICTIVE LOGICS 

5.1. Introduction 

The predictive logic of a likelihood theory is seen to be a very simple 
structure. The abstract propositions identify those classes of experimental 
propositions equivalent with respect to prediction, and have a natural par- 
tial-ordering and involution directly induced from the fundamental likeli- 
hood postulates (L1), (L2). No a priori identification process is necessary, 
as in the "operational approach" (Section 4.1). 

The predictive logic reflects the relationship between the descriptive 
and predictive components of the theory. In particular, a change in either 
component will in general lead to a change in the predictive logic. The 
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properties of the latter may therefore be used to characterize various classes 
of physical theories. For example, the predictive logics of classical "phase 
space" theories are always Boolean, while those of quantum "Hilbert space" 
theories are not [e.g., Examples 3.1 and 3.2 of Hall (1988)]. 

The characterization of possible theories of quantum phenomena in 
terms of their predictive logics may be considered a basic aim of the "quan- 
tum logic" approach to axiomatic quantum theory. Given that the successful 
building blocks of this approach are orthomodular posets (e.g., Varadarajan, 
1985), it is important to determine suitable conditions for a predictive logic 
to form such a poset. Conditions deemed suitable are those which have a 
direct significance for the physical properties of abstract propositions, rather 
than conditions motivated on purely technical grounds. 

For example, noting from (1 la) that , - - d e n  and ~ ( ~ d ) = d  for all 
d e N ,  it follows that the predictive logic of a likelihood theory forms an 
orthomodular poset if and only if: 

and 

d ^  ~ d = 0  (18a) 

d < ~ '  implies (i) ~ ' <  ~ d  (18b) 

(ii) ~ W ^ M e N  (18c) 

(iii) d v (,-~d A N') = ~ (18d) 

for all d ,  N'eN. Conditions (18a) and (18b) ensure that ,-~ is an orthocom- 
plementation; conditions (18c) and (18d) then ensure orthocompleteness 
and orthomodularity, respectively (e.g., Beltrametti and Cassinelli, 1981, 
Chapter 10). However, these conditions are not suitable as physical axioms 
for orthomodularity, as they have no direct interpretation in terms of the 
physical properties of abstract propositions. 

In contrast, the following section provides two simple axioms for ortho- 
modularity, which relate the structure of the predictive logic to the physical 
property of joint testability for abstract propositions. Moreover, strengthen- 
ing one of these axioms to the postulate that any two abstract propositions 
are jointly testable implies that the predictive logic forms a Boolean lattice. 
A possible third axiom is discussed in Section 5.3. 

5.2. Orthomodular Posets and Boolean Lattices 

Consider the case where two abstract propositions .4, ,~eN are jointly 
testable, i.e., d = ~  and ~ = g ~  for some experiment E e X  and subsets 
a, fl ~_R(E). Now, since r e a  c~ fl if and only if t e a  and refl, then E.~BeP 
is the experimental proposition which is verified if and only if E~ and E~ 



1144 Hall 

are verified. It follows (Section 4.1) that the abstract proposition 8 , ~ a  
corresponds to the joint verification of d and g ,  via experiment E. The 
following axiom for predictive logics identifies the conjunction of such d 
and g with joint verification: 

Axiom 1. 

g ~ ^ o ~ p = ~ n ~  for all E~X, a, fl~_R(E) (19) 

Axiom 1 equivalently identifies the likelihood of  joint verification 
g ,  n a(s) (for abstract propositions g~, 8p on state s) with the corresponding 
joint likelihood (8~ A 8p)(S). It can for the purposes of this paper be replaced 
by the weaker condition 

$~ v ~ = ~ ~ ~ whenever a c~ fl = ~ (19a) 

However, no physical insight appears to be gained by doing so. 
A second axiom for predictive logics is motivated by the argument that 

if ( ~ ,  <, ~)  has some fundamental physical significance, then, in particular, 
the relation d < ~  should indicate some physical connection between d 
and ~ .  But the simplest physical relationship between two abstract proposi- 
t ions is that they are jointly testable, suggesting: 

Axiom 2. 

d <~3 implies d and ~ are jointly testable (20) 

Axioms 1 and 2 together yield the following characterization of <_ : 

Lemma. Under Axioms 1 and 2, the relation d < ~ holds if and only 
if there exist E~X and a, fl ~_ R(E) such that (i) d = g~, ~ = gtJ ; and (ii) 

a ~_fl. 

Proof. Suppose first that .~' < ~ .  Then (i) follows directly from Axiom 
2. Hence d ^ ~ = d = r ~ p from definition (12a) and Axiom 1, so that a 
may be replaced by a n ft. But a n fl _ fl, proving (ii). Conversely, if (i) and 
(ii) hold, then d___ ~ follows immediately from ( l ib) .  �9 

This lemma has the "logical" consequence that if d < ~ ,  then ~r and 
may be jointly tested such that ,~r is verified only i f ~  is verified. 

Axioms 1 and 2 relate ^ and < in a very simple manner to the physical 
property of joint testability [and may indeed be considered as necessary if 
one wishes to interpret ( ~ ,  <, ~) as a propositional calculus]. That any 
predictive logic satisfying Axioms 1 and 2 forms an orthomodular poset is 
the content of the following theorem : 

Theorem 1. Axioms 1 and 2 provide sufficient conditions for the pre- 
dictive logic of a likelihood theory to form an orthomodular poset. 
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Proof It must be demonstrated that conditions (18) follow from (19) 
and (20). First, noting from Section 4.1 that every d e t ~  has the form d =  
~ ,  it follows from (1 la), (1 lc) and (19) that 

proving (18a). Second, suppose now that d _ < ~  for some d ,  ~3e~. Then 
by the above lemma, one may write d = ~ ,  ~ = ~ ,  with a___]J. Hence 
tiC_cat, so that ~ _ < ~ . ~ '  from ( l l a )  and ( l lb) ,  proving (18b). Further, 
from (11 a) and (19), --~d A ~J = ~ ,  ~ p ~ ~ ,  proving (18c). Finally, since (I 3a) 
and (18b) are equivalent (Section 4.2), it follows from (1 la), (19), and a - f l  
that 

sr v (--.d v ~ )  = .--(~W A . - - (~d  A ~) )  = ~{,, ~, (~c n W) c = ~ ,  = r 

proving (18d). II 

For the case of statistical theories (Example 3.3 of Section 3), Theorem 
1 admits an important corollary concerning the existence of "probability 
measures." A mapping m : ~  ~ [0, 1] for an orthomodular poset ( ~ ,  <, ~)  
is a (finitely-additive) probability measure if the conditions 

m(l)  = 1 (21a) 

m(.~Cv~)=m(d)+m(~)  for d _ < ~ 3  (21b) 

are satisfied for all d ,  ~E.~.  Further, a set M of probability measures is 
said to be order-determining, or full, on ( ~ ,  _<, ~) if 

m(d)_<m(r for all meM implies s r  (22) 

We have the following result: 

Corollary. Axioms 1 and 2 provide sufficient conditions for the pre- 
dictive logic of a statistical theory to admit an order-determining set of 
probability measures, M =  {m~ls~S}, where m~:~--* [0, 1] is defined for 
each s e S by 

m , ( d )  := sO(s) (23) 

Proof First, (.@, <, "0 is an orthomodular poset from Theorem 1, and 
from definitions (8) and (23): 

m~(g~) =p(E~, s) (24) 

where the likelihood mapping p satisfies conditions (1). Now, from (1 la) 
and (1 lc) one has I = ~ 0 =  ~ g o  = d~ and hence (la) and (24) imply that 

(i) ms(l) =P(ER(•), s) = 1 
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Further, if d _ < ~ ,  then the preceding lemma and property (1 la) imply 
that d = S a ,  ~ = g ~  with a~_fl c, i.e., a c~ fl= ~ .  Therefore d v ~ = ~ u ~ ,  
using (1 la), (18b), and Axiom l, and hence (lb) and (24) imply that 

(ii) m s ( d  v ~ )  =p(Ea u e, s) =p(E~, s) +p(Ea,  s) 

= m~(8~) + rn,(#a) 

= m s ( d )  + ms(~)  

Conditions (21) follow from (i) and (ii) above, i.e., ms is a probability 
measure on (~ ,  _% ~). Finally, (22) follows immediately from (10), (23), 
and (24), so that M is order-determining on (~ ,  _% ~). �9 

Theorem l is of significance to the quantum logic approach, in that 
orthomodularity follows from rather simpler axioms than have been used 
hitherto (see Section 7). The following theorem demonstrates further that 
the predictive logic of a likelihood lattice is Boolean under a natural strength- 
ening of Axiom 2. 

Theorem 2. Axiom 1, and the assumption that any two abstract propo- 
sitions may be jointly tested, provide sufficient conditions for the predictive 
logic of a likelihood theory to form a Boolean lattice. 

Proof. The assumption of joint testability implies that any two abstract 
propositions d ,  aje~, have the form d = r  ~ ' = r  for some E e X  and 
a, fl c_c_ R(E) .  Moreover, noting that this assumption is stronger than Axiom 
2, it follows from Theorem 1 that conditions (18) hold. Then, using (1 la), 
(18b), and Axiom 1, 

(i) d v.~ = ~ ( ~ d / x  ~ )  = ~o,~,p.).= G,,~ p e ~  

and 

(ii) ( d  ^ ~ )  v ( ~ d  ^ ~ )  = ~ ( ~ ( W  t, ~') ^ ~ ( ~ d  ^ ~')) 

= C ( ( a  n / W  n ( d  n fl)c)c = S /~  = 

Also, from definition (12b) one has 

(iii) W v ( ~  v ~ )  = ( d  v ~ )  v c~ 

and 

(iv) ,_~ v ~ =.~ v d 

But a theorem due to Huntingdon (1933; see also Birkhoff, 1967, Section 
10) states that properties (i)-(iv) above are necessary and sufficient for 
(.~, <, "0 to form a Boolean lattice. �9 
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5.3. Ternary Completeness 

In general, an orthomodular poset need not admit any probability meas- 
ures (Greechie, 1971). However, the corollary to Theorem 1 demonstrates 
that Axioms 1 and 2 are sufficient for the predictive logic of a statistical 
theory to indeed admit the existence of an order-determining set of such 
measures. 

A more general order-determining property may in fact be reasonably 
postulated for the states of a likelihood theory. The discussion in Section 
3.3 suggested that problems regarding the testing of likelihood predictions, 
including statistical predictions, could be avoided by dealing with terna~ T 
likelihood theories. This essentially corresponds to replacing the predictive 
logic (~ ,  _<, ~) of a likelihood theory with an associated ternary predictive 
logic ( ~ r ,  -<, ~), where for ~ r  one defines ~ r  by 

1, J ( s )  = l(s) 
: =  0, d r ( s )  ~'(s) =0(s)  

�89 otherwise 
(25) 

Thus d r  maps S to L3 (Example 3.2 of Section 3), and dr (S )  characterizes 
whether ,_~' is "certain," "impossible," or "indeterminate" for state s. 

From (25) it follows that (,-~d)r = ~(~r and that d r <  Mr whenever 
d__<_M. Hence the two predictive logics (~', _<, ~)  and (.~r, <, ~) will be 
isomorphic if and only if 

~4r < Mr implies ,~r _< M (26) 

In such a case, ( ,~, _<, ~) may then be recovered from the fundamental (and 
testable) ternary predictions of the theory, motivating (26) as a third axiom 
for likelihood theories. Condition (26) will be referred to as ternary 
completeness. 

It follows from definition (25) that , 4 r <  Mr if and only if S ~ -  S:e and 
S_e ~_ S_~,, where S~ denotes the subset of states for which ,~r is "cer- 
tain" to be verified, i.e., 

s~,:= {se Sl d(s) = l(s)} (27) 

Hence condition (26) has the equivalent form 

S~ ___ S,~ and S_~ ~_ S_.~ implies d < M (28) 

In this form it is clearly seen to be weaker than the commonly considered 
strongly order-determining condition (Beltrametti and Cassinelli, 1971, 
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Chapter 11) 

S~ ~_ S~ implies ~r < 9~ (29) 

A likelihood theory satisfying ternary completeness may alternatively, in 
analogy to condition (29), be said to have a ternary order-determining set 
of states. 

It is well known that quantum "Hilbert space" theories have a strongly 
order-determining set of states. Yet Greechie (1978) has given examples of 
orthomodular posets which admit an order-determining set of probability 
measures, but not a strongly order-determining set of states. This implies the 
existence of statistical theories satisfying Axioms 1 and 2 which cannot be 
embedded in the Hilbert space formalism. It would therefore be of interest 
to determine whether Axioms 1 and 2 provide sufficient conditions for a 
statistical theory with a ternary order-determining set of states to in fact 
admit a strongly order-determining set. Greechie's examples could then be 
bypassed by the assumption of ternary completeness as a third axiom for 
likelihood theories. 

6. DYNAMICAL ASPECTS 

The predictive logic of a likelihood theory is formed in a natural manner 
from the entire set of predictions made by the theory. Its invariance proper- 
ties should therefore be expected to reflect generic features of the class of 
systems described by the theory. 

For example, if this class is invariant relative to the set of inertial frames 
in Minkowski space, then the predictive logics relative to such frames should 
be connected by a set of isomorphisms which form a representation of the 
Lorentz group. Similarly, if the class of systems is invariant relative to the 
time shown on some "clock," then the predictive logics relative to different 
clock times should be isomorphic. 

In general, the invariance or symmetry properties of a predictive logic 
( -~, -<, "0 will be characterized by the group H of logic-preserving automor- 
phisms on ~ :  

a:={g~Aut( .~) lg(~ .~)=~g(d);g(d)<g(J))  for d < ~ }  (30) 

This group will be called the logical symmetry group of the theory. Any logic- 
preserving time evolution d ~ .~, for the abstract propositions of the theory 
must be described by a one-parameter family {g,} in H, with d , = g , ( d ) .  

The logical symmetry group of a likelihood theory has an important 
subgroup S consisting of those elements in H which may be implemented as 
automorphisms on the set of states of the theory, i.e., 

S := {gEHl3~eAut(S) with g ( d )  = d o  ~} (31) 
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In particular, if {g,} is a one-parameter family in S, then the evolution of 
likelihoods under f g, ~ j can be equivalently represented either by the evolution 
of propositions, d ,  = g~(d), or by the evolution of states, s, = ~,(s). In either 
case, likelihoods evolve as 

[.~r = d , (s)  = ~r (32) 

The subgroup S will be called the state symmetry group of the theory. 
In standard quantum mechanics, H corresponds to the Heisenberg pic- 

ture, in which propositions (represented by projection operators) evolve with 
time, while S corresponds to the equivalent Schr6dinger picture, in which 
states (represented by unit vectors or density operators) evolve with time. 
However, in the more general framework of likelihood theories an equivalent 
"Schr6dinger picture" cannot always be defined: S is typically a proper 
subgroup of H. A simple "discrete" example is provided by a deterministic 
theory (Example 3.1 of Section 3) with exactly four states, and a set of eight 
abstract propositions defined by 

~ = I d ' S ~ { O ,  1} ~ d(s) iseven} (33) 
s ~ S  

It can be checked that in this case H has 6 x 4 x 2=48 elements, which 
permute the six nontrivial abstract propositions while preserving involution, 
while S has only 4! = 24 elements, corresponding to the permutation group 
of order 4. 

This primary significance of the "Heisenberg picture" over the "Schr6- 
dinger picture" for likelihood theories follows from the lack of any assumed 
structure for the set of states S (such as convexity), and is in contrast to the 
approach discussed by Beltrametti and Cassinelli (1981, Chapter 23), where 
the evolution of states rather than propositions is given the greater funda- 
mental significance. It is of interest to note here the view of Dirac (1966, 
Chapter 1) that certain difficulties in quantum field theory may be resolved 
by in fact discarding the Schr6dinger picture in favor of a (nonequivalent) 
Heisenberg picture of evolution. 

7. CONCLUDING REMARKS 

The existence of inherent logical structures for classical and quantum 
theories was first emphasized by Birkhoff and von Neumann (1936). The 
existence of such structures for a much wider class of physical theories has 
been demonstrated here, based on the primitive notion of "likelihood." 

In this paper, probability and logic are relatively independent notions, 
though underpinned by a common concept (likelihood). Thus, probability 
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is regarded as a special type of likelihood (Example 3.3 of Section 3), while 
logical structures are inevitable and natural features of physical theories 
which predict likelihoods (Section 4). This contrasts with the usual tradition 
of "logic first, probability second' in both classical and quantum probability 
theory, where a logical structure is typically postulated apriori for the propo- 
sitions under consideration, and probabilities are then defined relative to 
this structure (e.g., Kolmogorov, 1950; Jeffreys, 1961; Cox, 1961; Beltra- 
metti and Cassinelli, 1981 ; Pitowsky, 1989). 

One of the main problems in the quantum logic approach to axiomatic 
quantum theory is to provide a sufficiently convincing setting or derivation 
for orthomodularity. For example, Maczynski (1974) relies on the additivity 
of probabilities and a technical "orthogonality postulate"; Marlow (1978) 
both on the additivity of probabilities and the a priori existence of an ^ 
operation; Foulis et al. (1983) on an apriori identification process for experi- 
mental outcomes and a technical "orthocoherence" condition; and lvanov 
(1991) on a technical "commutativity" condition and the a priori existence 
of an ortholattlce. 

In contrast, Theorem 1 of Section 5.2 provides a path to orthomodular- 
ity based on the primitive notions of likelihood and joint testability. In 
particular, the existence of a predictive logic follows for any theory which 
predicts likelihoods (Section 4). Axioms 1 and 2 of Section 5.2 then provide 
sufficient conditions for this predictive logic to form an orthomodular poset. 
There are no additivity, existence, or purely technical assumptions made, as 
in the works mentioned above. Rather, Axioms 1 and 2 provide direct phys- 
ical interpretations for ^ and <_, related to joint testability, which are in 
fact implicitly assumed in most versions of the quantum logic approach. 

In analogy to Theorem 1, discussed above, Theorem 2 of Section 5.2 
provides a remarkably simple path to Boolean lattices, based on Axiom 1 
plus the assumption of joint testability for any two abstract propositions. It 
is of technical interest to note that both theorems rely on conditions involv- 
ing only pairs of propositions. 

Finally, Example 3.2 of Section 3 indicates the close relationship of 
ternary likelihood theories with the "entities" defined by Foulis et al. (1983). 
The latter represent states as sets of possible outcomes (Example 3.2), and 
obtain an "operational logic" for an entity based on an apriori identification 
process for experimental outcomes (Section 4.1). In contrast, the predictive 
logic of a ternary likelihood theory is obtained simply as a particular case 
of likelihood theories in general (Section 4), with no assumptions necessary 
concerning the representation of states or the identification of outcomes 
belonging to distinct experiments. The framework of likelihood theories thus 
appears conceptually simpler than that of "entities." 
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